TRANSITIONING TO A CIRCULAR FOOD ECONOMY: THE SOLUTIONS FOR FOOD WASTES RETURNING AS BIO-STIMULANTS TO SUSTAINABLE PLANT GROWTH Prof. Habil. Dr. Grazina JUODEIKIENE KTU, Department of Food Science and Technology, Lithuania Latvia University of Life Sciences and Technologies, 16/12/2021 ### Content ### Introduction - II. The solutions for food wastes returning as biostimulants at KTU - III. Final conclusion with vision for collaboration ### Introduction # Transitioning of food production to a circular bio-economy ## Building the food system that works for consumers, producers, climate and the environment climate footprint global transition new opportunities resilience #### The EU will: Become climate-neutral by 2050 Protect human life, animals and plants, by cutting pollution Help companies become world leaders in clean products and technologies Help ensure a just and inclusive transition ## The interpretation of sustainable food systems ### A vision for food systems with cobenefits **Left:** Total food waste amount (including edible and inedible components) calculated along food supply chain (FSC) for each food group. **Right:** percentage of food waste (dark grey) out of the total food available. ## Contribution of each phase of the food supply chain to carbon footprint and food # Contribution of each commodity to carbon footprint and food wastage ### Ensuring sustainable food production Reduce by 50% the overall use and risk of chemical pesticides and reduce use by 50% of more hazardous pesticides Reduce nutrient losses by at least 50% while ensuring no deterioration in soil fertility; this will reduce use of fertilisers by at least 20 % Reduce sales of antimicrobials for farmed animals and in aquaculture by 50% Achieve at least 25% of the EU's agricultural land under **organic farming** and a significant increase in **organic aquaculture** Ambitious efforts across all menu items will be necessary to feed 10 billion people and help keep global temperature rise well below 2 degrees Celsius The emissions mitigation gap Source: GlobAgri-WRR model. ### Hierarchy of solutions to address food loss and waste #### REDUCE Most preferred Improve operations and practices to reduce generation #### RECOVER Donate surplus food to feed people Manufacture animal feed or other food products #### RECYCLE Synthesize ingredients for products like pharmaceuticals, cosmetics and fertilizers Produce biodiesel from waste oils or renewable natural gas through anaerobic digestion Create compost #### DISPOSE Send to landfill or incineration ### Biorefinery concept and circular economy Production of some chemical and/or bioactive compounds from plant-waste by the metabolic activity of lactic acid bacteria (LAB) Source: Frontiers in Microbiology, 2020, least preferred Schematic representation of the potential food and healthcare applications of high added-value compounds from agro-food wastes and by-products, including technical factors to be considered for their efficient utilization (Source: Ben-Othman et al., 2020) # IIA. The solutions for plant drink wastes returning for bio-stimulants production Project ERANET H2020 PROJECT "Disaggregation of conventional vegetable press cakes by novel techniques to receive new products and to increase the yield" (DISCOVERY) #### **INNOVATION OF PROJECT** ### DISCOVERY OFFERS WASTE-FREE PRODUCTION OF PLANT DRINKS ### I. Chemical composition of raw materials and press cakes (PC) (g/100 g. d. m.) | Samples | Raw material (flour) | | | | Press cakes | | | | |---------|----------------------|---------|-------|----------|------------------|---------|-------|----------| | | SK | Protein | Fat | Moisture | Dietary
fiber | Protein | Fat | Moisture | | Rice | 2,95 | 9,65 | 3,20 | 11,68 | 2,51 | 20,10 | 4,05 | 48,98 | | Soya | 2,86 | 42,75 | 15,67 | 7,93 | 5,99 | 28,22 | 12,05 | 49,60 | | Almond | 2,11 | 27,87 | 17,03 | 6,07 | 5,61 | 18,57 | 29,57 | 45,70 | | Cocos | 9,03 | 23,23 | 14,42 | 5,39 | 11,29 | 15,47 | 8,41 | 42,80 | | Oat | 2,21 | 19,09 | 5,05 | 9,97 | 2,29 | 21,42 | 6,03 | 50,60 | By-products of plant drinks production can be used as valuable components for the development of new products ### II. Development of the concept of press cakes (PC) bio-decomposition Composition of the Protein Ingredients from Insoluble Oat Byproducts Treated with Food-Grade Enzymes Fig. Total carbohydrate content determination **Fig.** Reduced SDS–PAGE protein profile of untreated and enzymatically treated oat press cake proteins: M, pre-stained molecular marker; Oat_Ctrl, Oat_Amy, Oat_Mix, Oat_Cxl. **Fig.** (A) CD spectra and (B) free SH group determination of Oat_Ctrl, Oat_Amy, Oat Cxl, and Oat Mix. Milan university & KTU results were published in the Journal Foods 2021, 10, 2695. https://doi.org/10.3390/foods10112695 ### III. Development of the concept of different press cakes (PC) biodecomposition | Press
cake | Amylase
/cellulas
e/protea
se ratio | Solid/
water
ratio | Hydrolysis
time
(temp. 50
°C) | Protein
recovery, % | |---------------|--|--------------------------|--|------------------------| | Rice
PC | 1:4:2 | 1:3 | 90 min. | 90 | | Cocos
PC | 1:4:8 | 1:6 | 90 min. | 88 | | Almon
d PC | 1:2:4 | 1:2 | 90 min. | 92 | | Oat
PC | 1:4:2 | 1:3 | 90 min. | 86 | Effect of enzymatic hydrolysis on the extraction of soluble proteins from PC's samples of analysed press cakes Using a combination of carbohydrases and proteases, protein recovery can be increased to 84-92% (depending on the type of PC). KTU results of PC application for baked goods production were published: - LWT Food Science and Technology 152 (2021), 112337 - Foods 2020, 9, 614; doi:10.3390/foods9050614 - Frontiers in Microbiology, 2021, Vol. 12, Article 652548 ### IV. Development of the concept of liquid fraction (permeate) bio-treatment and application for bio-stimulant production Permeate of soy, coconut, oat, rice and almond obtained during the processing of press cakes - PCs (Berief Food GmbH, Germany): Fraunhofer Institute UMSICHT, Germany ultrasound equipment (18 kHz; amplitude – 50 µm; power - 4,8 kW) | ľ | Soy | Almond | Coconut | Oat | Rice | | |---|---|---|---|---|---|--| | Mixture | 15 kg PC + 37,5 L H ₂ O | | | | | | | Ultrasound treatment | Power input:
4,7 kW;
18 kHz; 60 μm
Time 2 min* | Power input: 4,7 kW;
18 kHz at 60 µm amplitude
Time 2 min | | | Power input: 4,7 kW;
18 kHz; 60 µm
Time 2 min*** | | | Mechanical separation of liquid phase | Screw press
33.5 L | | Screw press
29.5 L | Screw pressing
was not applicable
Textile sieving
22,5 L | Screw press
26,5 L | | | Ultrafiltration of liquid fraction with direct freezing of permeate and retentate | PES Membrane, ~ 0,7 m², 10 kDa Time: ~3h Output: 19,5L permeate 10,5L retentate | | PES Membrane, ~ 0,7m², 10 kDa Time: ~ 3h Output: 19,5L permeate 9L retentate PES Membrane, ~ 0,7 m², 10 kDa Filtration time: ~ 4h*** Output: 15,7 L permeate 5 L retentate | | PES Membrane, ~ 0,7 m², 10 kDa Time: ~4 h*** Output: 15L permeate 9 L retentate | | | Drying of solid fraction | Temp. 60 | °C** | Temp. 80°C** | | | | In continuous flow reactor ^{**} Solid phase had to be treated carefully at low temp. and thin layers in order to prevent samples ^{***} Strong foaming occurred during treatment ### V. Chemical composition of permeate PK – coconut; PR – rice; PS – soya; PM – almond; PA - oat #### VI. Bio-treatment of permeate using LAB Fig. The growth curves of LAB Fig. Lactic acid production **Permeate samples:** PK – coconut, PR – rice, PS – soy, PM – almond, PA – oat ### VII. Evaluation of antifungal activity LAB fermented permeate (48 h) against Fusarium spp. (Table and Fig.) | | | Inhibition | ion zone on agar plate against fungi, mm | | | | | | |-----------------------|------------------------|---------------------|--|------------------------|---------------------|------------------------|--|--| | Sample | Fusarium gi
I | raminearum
T | Fusarium gi | raminearum | Fusarium culmorum | | | | | | 24h | 48h | 24h | 48h | 24h | 48h | | | | PK _{LUHS173} | 10.10±0.8 ^a | 17.00 ± 2.9^{c} | 11.00 ± 0.8^{a} | 14.25 ± 0.5^{b} | 9.50 ± 1.0^{a} | 14.50±0.7 ^a | | | | PR _{LUHS173} | 12.50 ± 0.6^{b} | 19.25 ± 1.5^{d} | 12.00 ± 0.8^{a} | 15.25±1.3° | 12.50 ± 1.0^{a} | 15.00 ± 0.8^{b} | | | | PS _{LUHS173} | 12.75 ± 1.0^{b} | 13.50 ± 0.6^{a} | 13.50 ± 1.3^{b} | 13.50±1.0 ^a | 12.75 ± 0.5^{a} | 13.00 ± 0.8^{a} | | | | PS _{LUHS236} | 12.25 ± 0.5^{b} | 11.50 ± 1.7^{a} | 11.50 ± 0.6^{a} | 12.50 ± 1.3^{a} | 11.75 ± 0.5^{a} | 13.25 ± 1.5^{a} | | | | PS _{LUHS206} | 13.00 ± 2.0^{c} | 14.00 ± 0.8^{b} | 14.50 ± 2.4^{c} | 15.67 ± 1.2^{c} | 13.25 ± 1.0^{b} | 14.50 ± 1.0^{a} | | | | PA _{LUHS173} | 13.75 ± 0.5^{c} | 13.50 ± 0.6^{a} | 13.75 ± 2.4^{b} | 14.67 ± 0.6^{b} | 13.50 ± 1.9^{b} | 14.75 ± 0.5^{b} | | | | PA _{LUHS206} | 17.00 ± 1.2^{d} | 17.75 ± 0.5^{c} | 16.00±0.d | 17.50 ± 0.6^{d} | 16.75 ± 0.5^{c} | 18.75 ± 0.5^{c} | | | Data expressed as a mean value (n = 3) \pm SD; SD – standard deviation. ^{a-c} Means within a column with different superscript letters are significantly different (p < 0.05); PK_{LUHS173}, PR_{LUHS173}, PS_{LUHS173} and PA_{LUHS173}— coconut, rice, soyabean and oat permeates fermented with *L. brevis*, respectively; PS_{LUHS236} – soyabean permeated fermented with *P. acidilactici*; PS_{LUHS206} and PA_{LUHS206} – soyabean and oat permeates fermented with *L. farraginis*, respectively. A - LUHS173 against F. graminearum F; B - LUHS173 against F. culmorum; C - LUHS206 against F. graminearum F; D - LUHS206 against F. graminearum; E - LUHS206 against F. culmorum. VIIIA. The effect of permeate (without bio-treatment) application for growth characteristics of wheat seeds in vivo (Table) | Sample | GP (%) | Root length (cm) | Stem length (cm) | Root fresh Wt. | Stem fresh
Wt. (g) | |---------|--------------------|---------------------|---------------------|------------------------|--| | 1 | 0.5.00.50 | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | Control | 86.0 ± 2.5^{a} | 8.13 ± 0.88^{a} | 4.89 ± 1.10^{a} | 0.0276 ± 0.003^{a} | 0.0360 ± 0.001^{a} | | PK | 93.3 ± 1.0^{c} | 8.95 ± 0.13^{b} | 5.74 ± 0.46^{b} | 0.0610 ± 0.004^{c} | 0.0630 ± 0.007^{c} | | PR | 88.5 ± 0.5^{b} | 6.94 ± 0.93^{a} | 4.10 ± 0.22^{a} | 0.0390 ± 0.003^{b} | 0.0490 ± 0.002^{b} | | PS | 92.5 ± 1.5^{c} | 7.88 ± 0.64^{a} | 5.45 ± 0.65^{b} | 0.0660 ± 0.010^{c} | 0.0640 ± 0.007^{c} | | PM | 93.0 ± 1.0^{c} | 8.80 ± 0.34^{b} | 5.80 ± 0.13^{b} | 0.0560 ± 0.005^{c} | 0.0630 ± 0.006^{c} | | PA | 88.5 ± 1.1^{b} | 6.53 ± 0.14^{a} | 4.58 ± 0.11^{a} | 0.0340 ± 0.006^{b} | 0.0480 ± 0.004^{b} | Data expressed as a mean value (n = 3) \pm SD; SD – standard deviation. ^{a-c} Means within a column with different superscript letters are significantly different (p < 0.05); GP – germination percentage. PK-coconut permeate; PR-rice permeate; PS-soyabean permeate; PM-almond permeate; PA-oat permeate. VIIIB. The effect of permeate (with bio-treatment) application for growth characteristics of contaminated wheat seeds in vivo (Table) | Sample | GP (%) | Root length | Stem length | Root fresh | Stem fresh | |-----------------------|--------------------|------------------------|------------------------|----------------------|---------------------| | | | (cm) | (cm) | Wt. (g) | Wt. (g) | | Control | 64.0 ± 1.4^{a} | 5.95±0.08 ^a | 4.85±0.01 ^a | 0.039 ± 0.03^{a} | 0.049 ± 0.002^{a} | | PK _{LUHS173} | 79.0 ± 2.8^{b} | 7.42 ± 0.32^{a} | 5.12 ± 0.04^a | 0.050 ± 0.06^{b} | 0.054 ± 0.003^a | | PR _{LUHS173} | $66.0{\pm}2.4^a$ | 6.48 ± 0.02^{a} | 4.74 ± 0.16^{a} | 0.032 ± 0.04^a | 0.052 ± 0.004^a | | PS _{LUHS206} | 66.0 ± 2.7^{a} | 6.97 ± 0.52^a | 4.85 ± 0.36^{a} | 0.053 ± 0.04^{b} | 0.053 ± 0.004^a | | PA _{LUHS206} | 72.0 ± 3.1^{a} | 6.80 ± 0.52^{a} | 5.09 ± 0.39^{a} | 0.041 ± 0.06^{a} | 0.050 ± 0.002^a | Data expressed as a mean value (n = 3) \pm SD; SD – standard deviation. ^{a-c} Means within a column with different superscript letters are significantly different (p < 0.05); GP – germination percentage. PK_{LUHS173} and PR_{LUHS173} – coconut and rice permeates fermented (48h) with *L. brevis*, respectively; PS_{LUHS206} and PA_{LUHS206} – soyabean and oat permeates fermented (48h) with *L. farraginis*, respectively. ### CONCLUSIONS - ➤ The study showed that bio-refinery approach of press cakes obtained from plant drinks production could be alternative strategy to ensure sustainable production and zero-waste economy. - This study demonstrates that developed bio-refinery using ultrasonication and membrane separation could find new application perspectives in biostimulants production. - These findings expand the functionality of waste usage and improves the sustainability of plant drinks production. ## IIB. Corn starch processing by-products valorization to bio-stimulant KTU Industrial PhD Student ### Valorization of by-products and wastes from cereal-based processing industry (Fig.) Source: Foods 2020, 9, 1243 This study was dedicated to increasing the efficiency of producing plant-based protein hydrolysate from corn processing by-product using traditional and non-traditional treatments. KTU results are published in the Journal "Food Bioscience", 2021 DOI:https://doi.org/10.1016/j.fbio.2021.101427 ## III. Final conclusion on bio-stimulants production with vision for collaboration Possible scenario in valorization chain of biostimulants from waste streams, Source: Frontiers in Plant Science, 2018, Vol. 9, Article 1567 Company A has the expertise in extraction and formulation from by-products. Company C-E, and G are involved in the production and marketing of bio-stimulants and they invest in registration and distribution. Company C-E are also selling biostimulants to intermediate companies (Company F), who produce seeds, substrates or fertilizers. ## THANK YOU FOR COLLABORATION MERRY CHRISTMAS AND HAPPY NEW YEAR !!!