DIETARY VALUE OF TRITICALE WHOLEGRAINS

Liga Balode¹, Arta Kronberga², Guna Havensone¹, Evita Straumite³, Laila Meija¹

¹ Riga Stradins University; ² State Priekuli Plant Breeding Institute; ³ Latvia University of Agriculture

I IN BRIEF

- \triangleright Assessment of nutrients proteins and starch in triticale wholegrains harvested in Latvia.
- > Latvian scientists first reported of presence of lunesin in triticale that could provide potential health benefits.
- \succ Next clinical studies analysis of triticale wholegrains and sprouted triticale glicemic index and insulin index.

III INTRODUCTION

Triticale (*x Triticosecale* Wittmack) is a man-made cereal crop developed around 1870 that was derived from inter-specific crosses between rye (Secale cereale L.) and common wheat (Triticum aestivum L.) or durum (Triticum turgidum L.). [1]

The main goal in creating triticale was to produce a grain with many of the advantages of wheat for product development – with the ability of rye to thrive in adverse conditions. [2]

Despite that triticale grains contain:

- 13-19% of proteins, with lower protein complex which forms gluten;
- high in dietary fibres;

II AIM

Aim of the study was to assess the macronutrient content in different triticale varieties (genotypes - Dinaro, 9403-97, 9405-23, 9402-3) harvested in Latvia.

excellent source of manganese and a good source of magnesium and phosphorus; very good source of folates and thiamin and other vitamins of B-group these grains are mainly used in livestock feeding and production of bioethanol.

IV METHODS

1. Triticale grain samples

Conventional triticale grain varieties:

- Dinaro;
- 9403-97;
- 9405-23;
- 9403-2

harvested in State Priekuli Plant Breeding Institute (Latvia)

2. Detection of protein and starch content

Grains were grounded in laboratory mill obtaining fine whole grain flour.

A spectroscopic investigations with an *Infratec* model 1241 Grain Analyzer from Foss Tecator Abhas has been used for a measurement of protein and starch concent in triticale grains. The instrument had an extended wavelength of 570-1100 nm. [3]

V RESULTS AND DISCUSSION

Characteristics of winter triticale varieties according to their nutritional traits, 2012, data from State **Priekuli Plant Breeding Institute**

Content of proteins and starch in different triticale varieties:

Genotype	Mean protein content, % RSo or=0.5	Mean starch content, % RS. or=0.8
Dinaro	9.7	69.0
9403-97	10.3	67.4
9405-23	11.0	67.6
9402-3	10.0	68.4

%

Scientific team from also detected a Latvia peptide lunesin in Dinaro variety (mean content 3.109 ± 0.029 mg/g grain).

Lunasin is a 43-amino acid long peptide that has been previously isolated from soybean, barley, rye and wheat.

Lunasin has potential anti-antioxidant, antiinflammatory and anti-cancer properties.

02

%

Content of amino acids in winter triticale varieties

Conclusion and further scientific work

Triticale is an alternative wholegrain source for human diet and could potencially be a functional food due to lunesin content.

Our next research study will be linked with the grain effect in human body – we will determine glicemic and insulin index after triticale wholegrain and sprouted triticale wholegrain meal, as well for oats, hull-less oats, wholegrain barley, hullless barley, rye and their sprouted meals.

- Serial experiment,
- 4-6 weeks long,
- 2 test groups,

02

• 15 persons per each

Genotype	Lysine, RS _{0.05} =0	Threoni % RS _{0.05} =0	Arginine RS _{0.05} =0	Leucine, RS _{0.05} =0	Isoleuci % RS _{0.05} =0	Valine, RS _{0.05} =0	Tryptop], $\%$, $\%$ $RS_{0.05}=0$	Proline, RS _{0.05} =0	Histidin % RS _{0.05} =0
Dinaro	0.36	0.33	0.54	0.70	0.37	0.48	0.11	0.96	0.25
9403-97	0.37	0.35	0.57	0.74	0.31	0.51	0.12	1.04	0.27
9405-23	0.38	0.36	0.59	0.76	0.39	0.52	0.12	1.07	0.28
9402-3	0.37	0.34	0.55	0.71	0.37	0.49	0.11	0.99	0.26
								 -	

~

04

Acknowledgements: The research leading to these results has received funding from the Norwegian Financial Mechanism 2009-2014 under Project Innovative approach to hull-less spring cereals and triticale use from human health perspective (NFI/R/2014/011).

N norway grants

03

References

[1] Goyal A, et. al. 2011 Yield stability analysis of broadly adaptive triticale germplasm in southern and central Alberta, Canada, for industrial end-use suitability. Can J Plant Sci 91 125-135.

[2] wholegrainscouncil.org

[3] Kalnina S, et al. 2013 Investigation in physicially chemical parameters of in Latvia harvested conventional and organic triticale grains. Int J Biol Biomol Agric Food Biotech *Eng* **7** 581-585.

Contact information LIGA BALODE

Riga Stradins University Street Dzirciema 16, LV-1007 Riga, Latvia