

TOTAL PHENOLS AND ANTIOXIDANT CAPACITY OF HULL-LESS BARLEY AND HULL-LESS OATS

Z. Kruma^{1*}, L. Tomsone¹, R. Galoburda¹, E. Straumite¹, A. Kronberga² and M. Åssveen³

¹Latvia University of Agriculture, Department of Food Technology, Latvia ²Institute of Agricultural Resources and Economics, Latvia ³ Norwegian Institute of Bioeconomy Research, Norway

INNOVATIVE APPROACH TO HULL-LESS SPRING CEREALS AND TRITICALE USE FROM HUMAN HEALTH PERSPECTIVE

Project overall aim is to increase a knowledge on impact of triticale and hull-less spring cereal species on human health potential.

Site-specific evaluation of triticale and hull-less spring cereals

The aim:

to evaluate the performance of local varieties of triticale, hull-less spring cereals under site-specific conditions for potential benefits for human diets

Wheat Rye Triticale

Oats Hull-less oats

Barley Hull-less barley

Site-specific evaluation of triticale and hull-less spring cereals

Development of germinated cereal flakes production technology

Quality and safety
evaluation of
breakfast cereals
made from triticale
and/or hull-less
spring cereals

Assessment of glycemic index of grain products

Quality and safety evaluation of breakfast cereals made from triticale and/or hull-less spring cereals

to evaluate quality and safety of breakfast cereals made from triticale and/or hull-less spring cereals selected in WP1 and quality changes occurring during product storage time.

Site-specific evaluation of triticale and hull-less spring cereals

Development of germinated cereal flakes production technology

Quality and safety
evaluation of
breakfast cereals
made from triticale
and/or hull-less
spring cereals

Assessment of glycemic index of grain products

Assessment of glycemic index of grain products

assessment of GI of different triticale and hull-less spring cereals grown in Latvia and Norway comparing to traditional cereal products

GLYCEMIC INDEX

shows how a carbohydrate-containing food raises blood glucose

Hull-less barley

Benefits:

- protein,
- soluble fibers β glucan
- total phenolic compounds
- high antioxidant activity of phenolic compounds

Hull-less oats

The aim of the current study was to assess total phenolic content and radical scavenging activity in different <u>hull-less</u> oats and barley varieties <u>comparing to hulled ones</u>

Materials and methods

Oats

- Odal
- Laima
- Bikini
- Nudist
- Stendes Emilija

Barley

- GN 03386
- Irbe
- Kornelija
- Rubiola
- Tyra

Materials and methods

Extraction of phenolic compounds from grains

- Solvent ethanol/acetone/water (7/7/6 v/v/v) solution
- Extraction ultrasonic bath at 35 kHz for 10 minutes at 20±1°C temperature, centrifuge at 3500 min⁻¹ for 5 min . Residues were re-extracted using the same procedure.
- Ratio of sample versus solvent was 1:10.
- Triplicate extraction process was done.

Determination of total phenolic content (TPC)

The TPC of the extracts was determined according to the Folin-Ciocalteu spectrophotometric method . Results were expressed as gallic acid equivalents

Determination of radical scavenging activity

Antioxidant activity of the plant extracts was measured on the basis of scavenging activities of the :

- ❖2,2-diphenyl-1-picrylhydraziyl (DPPH¹) radical,
- **❖** ABTS '+radical cation assay.

Statistics

• Analysis of variance (ANOVA) and Tukey test were used to determine differences among samples. A linear correlation analysis was performed in order to determine relationship between TPC, antioxidant activity such as DPPH, and ABTS +radical scavenging activity.

Results

Total phenolic compounds in oats (A) and barley (B)

Variety	Stende (LV)		Priekuli (LV)		Kvithamar (NOR)		Apelsvoll (NOR)		
	С	0	C	О	С	О	C	О	
Hull-less oats									
Bikini		.0]				•10		111	
Nudist			•10		[]	010	[100	
Stendes									
Emilija		all			ul			•10	

Results

DPPH scavenging activity of oats (A) and barley (B)

Variety	Stende (LV)		Priekuli (LV)		Kvithamar (NOR)		Apelsvoll (NOR)		
	C	0	C	O	C	0	C	O	
Hull-less oats									
Bikini	.1							.01	
Nudist			000	.0[]					
Emilija				.01	.00			.01	

Results

ABTS scavenging activity of oats (A) and barley (B)

Variety	Stende (LV)		Priekuli (LV)		Kvithamar (NOR)		Apelsvoll (NOR)		
	C	0	C	O	C	0	C	0	
Hull-less oats									
Bikini	••	.0				••		••	
Nudist								••	
Emilija			.0					.0	

Conclusions

- The present study determined TPC and antioxidant activity in grains of five oats and five barley varieties from Latvia and Norway.
- For oats and for barley, TPC and antioxidant activity was significantly influenced by cultivar variety. The type of grain-hull-less or hulled had no effect on analysed compounds.
- All barley varieties had higher TPC and ABTS scavenging activity comparing to the oats varieties.
- The highest activity was detected in hull-less barley line 'GN 03386'.
- Bioactive compounds should be taken into consideration developing new functional products.

Acknowledgment

The research leading to these results has received funding from the Norwegian Financial Mechanism 2009-2014 under Project Innovative apporach to hull-less spring cereals and triticale use from human health perspective (NFI/R/2014/011).

Thanks for your attention!

